
NASA Contractor Report .181.719

ICASE REPORT NO. 88-52

4

L)

DOMAIN DECOMPOSITION METHODS FOi THE

PARALLEL CCMPUTATION OF REACTING FLOWS

ELIECTE0
David E. KeyesNV01I

Contract Nos. NAS1-18107 and AFOSR 88-0117

September 1988

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING

NASA Langley Research Center, 11ampton, Virginia 23665

Operated 'by the Universities Space Research Association

BUTIO - STA T'£ 1rp A-

NASAI ̂ , o,/,- ; for publ7 ;.:;., i,
[)l~' t1tion Ulnli w,, 1

National Aeronautics and
Space Administration

Langley Resmrch Center
Hampton. Virginia 23665

~~jk

Domain Decomposition Methods
for the Parallel Computation

of Reacting Flows

David E. Keyes*
Department of Mechanical Engineering

Yale University
New Haven, CT 06520

Abstract

Domain decomposition is a natural route to parallel computing for partial differential equation
solvers. In this procedure, subdomains of which the original domain of definition is comprised
are assigned to independent processors at the price of periodic coordination between processors
to compute global parameters and maintain the requisite degree of continuity of the solution at
the subdomain interfaces. In the domain-decomposed solution of steady multidimensional sys-
tems of PDEs by finite difference methods using a pseudo-transient version of Newton iteration,
the only portion of the computation which generally stands in the way of efficient parallelization
is the solution of the large, sparse linear systems arising at each Newton step. For some Jaco-
bian matrices drawn from an actual two-dimensional reacting flow problem, we make comparisons
between relaxation-based linear solvers and also preconditioned iterative methods of Conjugate
Gradient and Chebyshev type, focusing attention on both iteration count and global inner prod-
uct count. The generalized minimum residual method with block-ILU preconditioning is judged
the best serial method among those considered, and parallel numerical experiments on the Encore
Multimax demonstrate for it approximately 10-fold speedup on 16 processors. The three special
features of reacting flow models in relation to these linear systems are: the possibly large num-
ber of degrees of freedom per gridpoint, the dominance of dense intra-point source-term coupling
over inter-point convective-diffusive coupling throughout significant portions of the flow-field, and 0
strong nonlinearities which restrict the time-step to small values (independent of linear algebraic
considerations) throughout significant portions of the iteration history. Though these features are
exploited to advantage herein, many aspects of the paper are applicable to the modeling of general
couvective-diffusive systems.

......

This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract No. NASi-8107 and by the Air Force Office of Scientific Research under Contract No. AFOSR 88-0117
while the author was in residence at the Institute for Computer Applications in Science and-Engineering
(ICASE), NASA Langley Research Center, Hampton, VA 23865.

-- ~~~ ~ ~~... -*-:-..-....-',-.....--

1. Introduction

Computational scientists and engineers porting large-scale codes to most contemporary parallel
computers are faced directly with the related issues of partitioning programs across processors and
partitioning data across memories. For the large subset of scientific codes which are based on the
discretization of partial differential equations in multidimensional domains, domain decomposition
is a natural basis for the partitioning, at least in the coarse-to-medium granularity range. It is
"natural" in the sense that both the data structures and the algorithms employed in a serial code
can be carried over to the parallel case, changed only by the addition of new code to treat the
artificially introduced boundaries and to mediate computation of global parameters. We shall not
attempt a quantification of the granularity of the computation in terms of an absolute number of
processors, since granularity is a relative concept in domain decomposition applications. Typically,
we would like to require that the subdomains remain "chunky", in other words, that the number
of boundary degrees of freedom remain small relative to the number in the subdomain interiors. In
this respect, the subdomains will resemble the original domain, for which a good solver is presumed
known. We note in passing that domain decomposition has other virtues apart from creating parallel
threads of execution, such as operator adaptivity, graceful accommodation of complex geometry,
and clean memory management of problems too large to fit in active core. Some instances of these
have been described theoretically and illustratively in the collections [6, 12, 23, 24].

According to our parallelization paradigm, the domain of definition of the PDE is decom-
posed into subdomains and a one-to-one mapping of subdomain to processor is created.* For an
explicit stage of a calculation, of which matrix multiplication is representative, the task of finding
independent threads of execution ends with the decomposition. Parallelization consists of simply
subdividing the ranges of DO-loops. For an implicit stage, of which matrix inversion is represen-
tative, a proven serial algorithm may be employed on each subdomain, but additional provisions
must be made to enforce the original equations at the subdomain interfaces. In their simplest
form, the interface conditions can take the form of interpolative updating of datz in regions of
subdomain overlap. Other forms include simultaneous updates of interior and interface data in a
global preconditioned iterative process and incorporation of the interface constraints in a global
variational principle.

There are potentially three penalties to be paid in distributing a solution algorithm over an
array of independent processors: synchronization overhead, communication overhead, and degra-
dation of convergence rate. The synchronization penalty arises if the processors have data depen-
dencies which cause them to idle. This can happen at convergence checkpoints, for instance, or at
any other point where an exchange of data is required if the processors have unequal amounts of
work to do. The communication penalty is the time spent physically exchanging messages between
processors which depend on common data (or granting controlled access to shared memory). This
can be non-negligible even in perfectly load-balanced parallel configurations. In an effort to keep
the synchronization and communication overhead down, natural tradeoffs may exist which degrade
the convergence rate of the algorithm by substituting readily available data for the best possible
data. These penalties are measured indirectly through the speedup and efficiency figures-of-merit
of a parallel implementation. A common measure of speedup is the ratio of the uniprocessor execu-
tion time of a given algorithm to that of the multiprocessor execution of the same algorithm. The
corresponding measure of efficiency is the speedup divided by the number of processors. Within
the context of a specific algorithm, efficiency and speedup are functions of problem parameters,

*Mapping me sbdooamin to a sb-dustwr proce a s also poedblh. but involvM a difoes da of1on, sinm aae-
boed decaanoitiom lead the-de to lo&-step houwgwnos programmig of the individual procems, whilk mamsppw-
baed dprvmpli " mgM not. In a =mwlU contmt, genealisation in the other direction night be natural, namely mapping
everal mbdomin from differet umitiM levdes ont toe mu pocemr.

1,

...

such as problem size and decomposition granularity, as well as machine parameters, such as the
ratio of local to remote memory access times or the ratio of floating point arithmetic time to the
latency period of interprocessor messages. While theoretical computational complexity analyses
can elucidate some general trends, the demonstration of parallel efficiency inevitably requires some
experimental information in all but ideal problems.

The cost-effectiveness of ebtaining parallelization through domain decomposition as opposed
to other methods can depend on the relative weighting of three (to some extent mutually exclusive)
summands in the cost objective: efficiency, wall-clock execution time, and software development
time. Though efficiency is always important in the many-processor regime, our main interest is
in algorithms that perform competitively over a range of granularity which specifically includes
a single processor. In confining attention to algorithms which are "methods of choice" in serial,
many which parallelize efficiently are ruled out. One near-term motivation for techniques which
perform acceptably over a range of granularities is that jobs which use nearly all of the memory
of a multiprocessor supercomputer, such as the Cray-XMP or the ETA-10, effectively tie up most
of the processors sharing that memory, whether their cycles are actually employed or not. The
ability to keep the processing force in rough proportion to memory usage over a range of problem
sizes can be an economic advantage. Independent of economic considerations, there is obviously
a premium on the ability to reduce wall-clock time by adding processors in "production mode"
in many applications. Until the elusive day when native software facilities make parallelization
automatic, domain decomposition will have a significant role to play in meeting these objectives.

The outline of this case study of the applicability of domain decomposition to the computation
of reacting flows (which must be regarded as merely preliminary in several respects to be noted) is
as follows. Section 2 describes a reacting flow model with features that stretch the supercomputer
state-of-the-art, and also the relation to it of an approximate reduced model known as the "flame
sheet", to which numerical consideration is confined in the sequel. A numerical discretization and a
solution algorithm are presented in section 3. Section 4 provides a brief complexity analysis for the
domain-decomposed parallel implementation and shows the pivotal role in the parallel efficiency
of the sparse linear solves required by Newton's method. Section 5 discusses alternative linear
algebraic methods and presents some serial results for sample Jacobians drawn from flame sheet
simulations. Parallelization issues for the linear algebra itself are considered in section 6, and some
numerical results obtained for one of the methods over a range of 1 to 16 processors on the Encore
Multimax, a shared memory computer. In section 7 we draw some conclusions and state some open
research questions.

2. Mathematical Modeling of Reacting Flows

The goal of this section is to convey the structure and dimension of the reacting flow system,
and not to dwell on the underlying physics. Our attention is confined to two space dimensions,
because a "third dimension", namely, the number of components defined at each point, already
appears in the fill model, and because many combustion applications are well approximated by
axisymmetry. Under this restriction, it is natural to adopt a streamfunction-vorticity formulation
of the fluid dynamics rather than a velocity-pressure formulation. The number of unknowns is
thereby reduced by one, and more conveniently, each PDE in the streamfunction/vorticity system
is formally of elliptic type.

For definiteness, we cite without derivation the following set of elliptic boundary value problems
(see, e.g., [13]). Though typical of many reacting flow models, they do not include effects which
will in some contexts be essential (e.g., radiation, turbulence), and which could alter the algebraic W
connectivity of the discrete governing system. The problem motivating the present work is an
axisymmetric isobaric laminar flame, such as the gaseous co-flowing jet flame sketched in Fig. 1.

2

Figure 1: Schematic of a confined non-premixed laminar jet
flame.

Let r and z denote the radial and axial directions, v, and v, the respective velocity components,
and p the density. We introduce the variable density Stokes streamfunction 4' such that

prr el -~ad prvz = k

and the vorticity

Oz Or
The species concentrations by mass are Yk, for k = 1, 2,... K, where K is the number of distinct
chemical species in the reaction mechanism. The temperature is T. These principal fields satisfy
the following equations.

Streamfunction (overall mass conservation):

a U 10 + 8 +W'=o. (2.1)

Vorticity (momentum conservation):

2 3
Oazkror Or raOz) r r krW Oz '4% rz7"

+r2 9LP+ r2vV2 v+ V.2 ioP (2.2)

Or 2

Species (detailed mass conservation):

a (Yko) (YL") +± (rYkVk) + ± (rpYkVk.)
Fz Or/ Or (Oz) r(7Ox

-rWktbk=O, k=1,2,...,K. (2.3)

3

Temperature (internal energy conservation):

t c\ 0 pb1 0 rAT) 01 OT\
Oz rj r .9zj r rJ _4Z TZj

K aK

+r, IPkyk + Vk, +r hkWkk=0. (2.4)
k--_ k=1

Other parameters appearing in this system are: the viscosity of the mixture /, the acceleration
of gravity g, the diffusion velocities of the kth species in the mixture (Vk,, Vk,), the specific heat of
the ktI species Cpk, the specific heat of the mixture cp, the thermal conductivity of the mixture A,
the molecular mass of the kth species Wk, and the generation/consumption rate of the kta species

The system is closed with the multicomponent ideal gas law,

pW (2.5)

where W is the mean molecular mass of the local mixture, p the pressure, and R the universal gas
constant. The Arrhenius reaction rate law for a system of J reactions gives

JK

tbk- (V'i-Vk) [[kWi - k3 W- (n) , (2.6)

where the forward rate coefficient of reaction j is given by

ki = AyT 0jexp(-Ei/ RT), (2.7)

and where, in turn, A,, the pre-exponential rate constants, /3l, the temperature exponents, E,,
the activation energies, and Ki, the equilibrium constants, are assumed known. The Vjk are the
stoichiometric coefficients of the kth species in the Jth reaction. Superscripts ' and" on the t jk denote
the reactant and product sides of the stoichiometric equation, respectively; thus tbk is positive where
species k is produced. Thermodynamic and constitutive equations provide the temperature- and
composition-dependent specific heats, viscosities, thermal conductivities, and diffusion velocities.
The matrix of stoichiometric coefficients is typically very sparse, with each of the J elementary
reactions involving only a few of the K species. For hydrogen or lower hydrocarbon flames in air,
J and K are 0(101 - 102).

Though formally elliptic, the presence of strong convection renders all of the governing equa-
tions except that of the streamfunction approximately parabolic in z.

In most practical combustors, the reactants are supplied in a non-premixed state in streams
from different reservoirs, and the rate of combustion is limited by the diffusive mixing of the
reactants rather than chemical reaction rates. The flame sheet model exploits this large Darnkhler
number (ratio of diffusion to reaction time scales) by replacing a reaction zone of finite thickness
with an interface (of unknown location) across which gradients of the temperature and species
are discontinuous.* The interface subdivides the physical domain $1 into an oxidizer-free zone flF
and a fuel-free zone flo, in either of which the full composition and thermodynamic state of the
gas mixture can be recovered from a single conserved scalar. The flame sheet is an economical
means of computing initial iterates for detailed kinetics calculations [16), since it requires just

*Our version of the dame sheet includes some additional smplifying awumptions; wee [16 for details.

4

three components per gridpoint (the variable density Stokes streamfunction ip, the vorticity w,
and a conserved scalar S) instead of the dozens that would be required with full chemistry. The
equations which replace (2.3)-(2.7) are:
Conserved Scalar (Energy and Mass Conservation):

_ (s -" - ' -s - _- ' rpD- - 9 (rpD-S =0, (2.8)

Algebraic State Relations:

V = pF(S(M)), E 11F (2.9)P(1 =,po(S(I-), i E flo '

AM } (2.10)
tDo(S(Z)), n E 1o

D(i) = { DF(S(x)), Z E O F (2.11)

The fields of T and the Y, may also be obtained from S and are convenient intermediates in
the evaluation of the right-hand sides of (2.9)-(2.11). Though the flame sheet is a more compact
problem in terms of the number of unknowns, the spatial density distribution, with sharp gradients
leading up to a gradient discontinuity at the flame front, carries the difficult nonlinearities of the
original system. The ratio of maximum to minimum density in the flow field is typically 0(101),
and the ratios of the extreme viscosity and mass diffusion coefficients, I in (2.2) and pD in (2.8),
are on the order of the square root of the extreme density ratio. Fig. 2 displays the converged
flame sheet density profile for the problem studied in sections 5 and 6, and the grid on which it was
obtained. Note the severe gradients near the fuel/air inlet boundary at r = 0.2 cm. For plotting
clarity, the true axial-to-radial aspect ratio of 8:1 has been distorted.

As an illustration of the quality of the flame sheet results for the temperature distribution, we
display Fig. 3 from [161 which compares a flame sheet solution on a one-dimensional 38-point grid
to a detailed kinetics solution on an adaptive 65-point grid. However, the flame sheet results have
little information to offer concerning the chemical structure of the reaction zone, because of the
restrictive assumptions employed, especially that the product of the fuel and oxidizer concentrations
is everywhere zero.

3. The Discrete Governing System and Its Solution

The governing equations, along with appropriate boundary conditions, are differenced on a
two-dimensional tensor product grid (but see also [30] for local adaptive gridding results) which is
generated adaptively from an initial coarse grid by subequidistribution of gradients and curvatures
of the solution components. This concentrates grid points in the regions of high-activity (fronts and
peaks) in the domain. Second-order differences are used throughout except for gradient boundary
conditions, and for the convective terms of the conservation equations in which first-order upwind
differences are employed. This discretization can be accommodated within the standard nine-point
stencil (the corner points being necessitated by the mixed derivatives in the convective terms) and,
apart from the source term, insures the diagonal dominance of the Jacobian. The evaluation of
the governing equation residuals at a given solution iterate constitutes a significant expense, so

ti • .--

;3 :3

.OENSITY 0. 10 GMIC 3 I FLME SHEET GRID 31 BY 31

°LI I|ILIl

o.q lrlil.llJl

R/ 5.0 (CM) / 5.0 CM

Figure 2: Density contours in a co-flowing non-premixed
methane-air flame, computed in the flame sheet limit. Except
for the spatial variability of mixture molecular weight W, the
temperature field is inverse to this through (2.5), and thus
has similar structure. The hottest region (and the density
trough) lies near the fuel inlet. The grid is shown on the
right.

methods which make efficient use of the function evaluations are required. For such problems,
robust variations of Newton's method are often preferable to less fully coupled iterative methods
or associated explicit time-marching methods (see, e.g., [28]).

We write the overall system in the form

F(O,) = 0, (3.1)

where 4' represents a column vector of all of the unknowns. Equation (3.1) may be solved efficiently
by a damped modified Newton method provided that an initial iterate 401O) sufficiently close to the
solution 0,* is supplied. The damped modified Newton iteration is given by

O, (W+) - , (k) + A(k)6 4,(k), (3.2)

where
-(jkk)y1F(4 ,(k)), (3.3)

6

2500

2000

z

500 ,

Y IN Cm

Figure 3: Comparison between one-dimensional tempera-
ture profiles computed from flame sheet and a detailed kinet-
ics formulations in a non-premixed methane-air flame.

where the matrix J() is an approximation to the actual Jacobian matrix evaluated at the ki h

iterate. We refer to bo(k) as the kh update. When)(k) = I and j(k) = j(k) = OF (O(k)), for all k, a
pure Newton method is obtained. The iteration terminates when some (possibly scaled) 2-norm of
6.0(k) drops below a given tolerance. In well-conditioned systems, this will, of course, also be true
of the norm of F(0,(1)).

A sufficiently good initial condition for Newton's method is usually obtainable by an elementary
continuation procedure, namely driving a pseudo-transient form of (3.1),

DLO + F(0) = 0, (3.4)

where D is a scaling matrix, part of the way towards its steady state. If (3.4) is implicitly time-
differenced with the backward Euler method using time step At from a given initial state 4, a new
system,

D -) + F(O) = 0, (3.5)
At

results, which possesses the Jacobian
D 8F
At +0,

With an appropriate D and for a succession of a sufficiently small At, which will, however, in
pursuit of efficiency, be larger than what would be required for accurate resolution of the physical
transient, the iteration of (3.5) is a numerically robust procedure for generating an iterate from
which Newton's method will converge. Moreover, due to the close relationship of (3.5) to (3.1), only
minor modifications of the steady-state code for (3.1) are required to make it a transient/steady-
state hybrid. Adaptive control of the size of the time steps used in (3.5) can enhance the convergence
rate of the hybrid algorithm. One useful strategy is to choose At based on a loose temporal
truncation error bound on the most rapidly vaying component of the solution. As 4, approaches
4,* and At becomes large, this effects a smooth transition to the (infinite time step) steady-state
formulation.

T ir

coordinate =msh Coupl I between rove

..

Couping betwen poits copin t a

Figure 4: A schematic of the Jacobian matrix of the 9-
point finite-difference operator showing its sparsity structure.
(a) upper left: a two-dimensional 5 x 6 grid with the sten-
cil corresponding to (ij) = (3,3) highlighted. (b) upper
right: gross sparsity structure of the Jacobia:', n* blocks of
size mr x mr, representing the coupling between rows. (c)
lower left: an enlargement of the cross-hatched block, m2

blocks of size r x r, representing the coupling between points
within a row. (d) lower right: an enlargement of the double-
cross-hatched block, r2 blocks of size 1 x 1, representing the
coupling between degrees of freedom at a point.

Ordering the solution components at each gridpoint within a lexicographical ordering of the

gridpoints themselves results in a Jacobian which has a standard block nine-diagonal structure. To
quantify the overall sparsity, let there be m and n gridpoints in the radial and axial coordinate
directions, respectively, and r unknowns per gridpoint (r = 3 for the flame sheet). The r × r blocks

must be assumed fully dense to accommodate the most general kinetic mechanism and composition-
dependence of the transport properties. The fraction of Jacobian elements which are nonzero is
then approximately 9/(rim). For m and n on the order of 30, which is certainly smaller than what

is required for well-resolved reaction zones, this number is already approximately only 1%. For ease
of visualization, an m = 5, n = 6 example is given in Fig. 4.

_ , m........ni..................i. l

The complexity of the governing equations in either formulation above precludes analytic ex-
pression of the elements of the Jacobian; therefore a finite-difference approximation to the Jacobian
must be used. Extending the sparse Jacobian evaluation ideas of Curtis, Powell and Reid [9], as
described in more detail elsewhere [29], we can form all of the nonzero elements from (9r + 1)
independent vector residual evaluations. This is still a large number of function evaluations, with
the result that coefficient generation becomes at least a co-dominant term in running time of the
code.

The method described in this section has been successfully applied to a laminar methane-air
jet in serial by means of a three-pass solution method, and results have appeared in [30]. In the
first pass, which was carried out on a relatively coarse grid, the flame sheet model was used to
generate hydrodynamic and temperature profiles. In the second pass, the temperature profile was
maintained at the flame sheet solution, and the full system was solved with the energy equation
(2.4) omitted. Finally, the energy equation was readmitted, the temperature profile allowed to
adjust, and the full system solved on several successively finer grids, selected adaptively to resolve
the high activity regions of the flame. This procedure, which is similar to that found invaluable in
the one-dimensional context (16], promotes convergence of the full nonlinear iterations by gradually
phasing in the details of the physical model, so that a good starting estimate exists for each pass,
and promotes efficiency by keeping the size of the discrete system relatively small until the endgame.
Even so, the equivalent of approximately 10 Cray-XMP hours is required for the complete effort.

Each of the three phases employs Newton's method as described above. From (3.2)-(3.3) and
the paragraph following, we identify for further analysis the five basic tasks which together account
for almost all of the execution time required by the code: (1) DAXPY vector arithmetic, (2) the
evaluation of norms, (3) the evaluation of residual vectors, (4) the evaluation of Jacobians, and (5)
the solution of linear equations involving the Jacobian matrix.

4. Complexity Analysis for a Domain-Decomposed Solver

A complexity analysis of a fairly involved computational procedure is most clearly approached
in a modular fashion. Accordingly, we begin by constructing operation counts for the five major
computational subtasks listed at the end of the previous section, then combine them in proportion.
W -istrict our analysis here to strip-wise decompositions and to leading-order effects. A strip-wise
decomposition with radially oriented strips is natural for a domain consisting of a symmetry plane of
the domain sketched in Fig. 1 Lecause the high aspect ratio will lead to tight radial coupling in the
diffusive terms of the governing equations, whereas the axial coupling is dominated by convection,
and hence predominantly unidirectional.

We begin with a model for the computer itself. A network of p homogeneous processor ele-
ments is assumed, each of which has sufficient local memory or a devoted share of global memory
to represent the data of the associated subdomain. We define -y as the unit of scalar floating
point operation time. Any vector-processing capability of these elements is ignored, although we
acknowledge that the potential savings of vectorization are considerable in this context [11].

The processors communicate by passing messages or accessing shared memory through a global
bus, depending upon the interconnection network. We define a as the time overhead to route a
message of any length between a pair of neighboring processors or enforce a "lock" on a shared
memory location, and 8 as the additional transfer time per floating point word, which is simply the
reciprocal of the bus bandwidth for access to shared memory. For simplicity, we assume that only
sending messages (or depositing data in the shared memory) takes time. Receiving (or reading data)
is assumed to be free. Since all sent messages are presumed received at some point, any additional
reception cost which ought to be included to model a particular machine can be incorporated by
simple readjustment of a and (e.g., doubling them if the two costs are comparable).

9

We define two architecture-dependent functions of p. CE, the local exchange coefficient between
processors sharing neighboring sides, and CR, the global reduction coefficient. The global reduction
operation produces a single scalar from scalars defined on each processor, whether by addition in
the case of a global inner product whose partial sums are locally accumulated, or by the logical
"and" operation in the case of a convergence test. These coefficients which multiply terms in a and
,0 take into account the possibly degraded ability of the network to exchange data as the number
of processors grows. In the case of the ring of processors or a hypercube, CE is unity regardless
of the number of processors because there are channels solely devoted to these nearest-neighbor
message routes in the network. In the case of the shared-memory machine, we make for simplicity
the extreme assumption that the bandwidth to memory for each processor must be divided by the
number of processors; hence CE is p itself. For a ring or a hypercube, CR is twice the diameter of
the network, since a partial sum must be collected, then redistributed. Hence CR is p or 2logp,
respectively. CR is 2p for a shared-memory machine.

The complexity model depends in addition on basic discrete problem dimensions: the resolution
of the grid n (assumed the same in each direction for simplicity), and the number of components
per gridpoint r. We also require an arithmetic operation count coefficient CA, which depends on the
details of the physics and chemistry incorporated into the governing equations an~d the number of
points in the discrete stencil. The product of CA with n2 r gives the number of arithmetic operations --

per residual vector evaluation. In terms of these parameters the major algorithmic subtasks have
the following complexities.

DAXPYs:

n2 r]

The DAXPY requires no communication and parallelizes perfectly over any partitioning.

Global Norms:

-rY+ [CR]a + [CR]3.]

The norm requires local inner products followed by a global reduction of the scalar partial sums.

Residual Vector Evaluation:

[n CAr] y + [2CE] a + [2nrCE] P.

To satisfy the data requirements of the nine-point finite difference stencils on the artificial bound-
aries of the subdomains, each strip subdomain must exchange its two artificial boundary rows with
its neighbors.

Jacobian Evaluation: [[1 ((9r +)CAr +18r2)] +

[(2(9r + 1) + 6)CE] a + [(2(9r + 1)nr + 6nr2)CE] /.

The Jacobian evaluation cost includes (9r + 1) independent function evaluations, along with some
finite difference arithmetic to generate the matrix elements. The communication terms include
both the sharing of subdomain boundary data needed for the function evaluation and the exchange

10

I.

L

of 6n r x r Jacobian blocks generated on adjacent processors using the grid-coloring described in
[29].

For a base-line linear algebraic method, we employ concurrent block-line relaxation, sweeping
in the downstream axial direction within each subdomain to follow the convection. In the limit of
one processor, this is the block-line Gauss-Seidel method; in the limit of n processors, so that the
each subdomain consists of only one row, this is the block-line Jacobi method. Treating only the
three central diagonal blocks implicitly, each row of the sweep requires the formation of a modified
right-hand side which includes a term in r2 from each of the other six Jacobian blocks in the same
row, followed by a block tridiagonal solve. The factorization of the block tridiagonal system need
be performed only once per Jacobian evalaation. The assemblage of the right-hand sides (which
includes the exchange of the rows lining the artificial boundaries) and the back-substitution is
required on each sweep, as is a convergence check based on a global norm. Thus, we have:

Block Relaxation Factorization Phase:

Block Relaxation Sweep Phase:

[- (9r2)] -t + [2CE + CR] a + [2nrCE + CR] /3.

If the linear systems involving the Jacobian are solved to a level of convergence which is inde-
pendent of the granularity of the decomposition, then the number of Newton steps is independent of
the type of decomposition and the number of processors.* We may therefore use the Newton step as
the largest aggregate in the complexity model, and work out the complexity on a per-Newton step
baeis. Neglecting the overhead associated with possible problem-dependent damping and selection
of time steps, each Newton step consists of one DAXPY, one norm, one function evaluation, 1/N
Jacobian evaluations and L relaxation sweeps, This count introduces the final two parameters of
the model: the average number of Newton steps between Jacobian evaluations, N, and the average
number of relaxation sweeps per Newton step, L. For systems as complicated as (2.1) through
(2.7), no theory exists from which either N or L can be specified as a function of n and p. We must
therefore obtain N and L from problem-specific experiments.

For present purposes, we will focus on an individual point in physical and numerical parameter
space, leaving only the machine and network parameters free. (A more general approach is taken
in (17].) We adopt the 16-species, 46-reaction mechanism of [221 for the oxidation of methane. Here
r = 19 and the operation count coefficient CA is determined from counting and relative timing
measurements to be approximately 2.6 x 103. L n 200 and N ;_ 5 are also available from averaging
over various runs of the serial code on a grid of approximately 1200 nonuniformly-spaced points.

With the preceding formulae, we can estimate the execution time T per Newton step of the
p-processor parallelized solver through a relation of the form:

TP = 'Iy + af 0 + Ofe. (4.1)

From the assigned values, we can extract the leading terms of each component of sum as:

*This condition may not be satisfied for relaxation methods in which convergence is based solely upon the sine of the
update, since the deteriorating condition number of the iteration matrix with finer granularity may allow a larger residual at
convergence.

11I

CA 2r2, 18r o 24r
f-v (+ L= (_r + 2L)CE + LCR, fO = + 2L)nrCE + LCR.

The linear appearance of L, the iteration count for the relaxation method, in the leading terms
of the communication overhead puts a premium on keeping this parameter as small as possible
for good parallel efficiency. 6/31 = 0(1) and o/y 0 O(102) are typical. As p, which appears to
a negative power in f, and to non-negative powers in CE and CR increases, the communication
terms potentially dominate, rendering the parallel arithmetic capability worthless. For p greater
than some Pr(a/7,/y), the phenomenon known as speed-doum can occur, in which adding
processors increases wall-clock execution time.

5. Alternative Linear Algebraic Methods

In this section we compare a variety of linear algebraic methods on a series of four Jacobian-
residual systems of the form

j(o(k)) 6 ,0(k) = - F((k)).

The results for the iteration count and global inner product count are shown in Table 1. The first
three Jacobians come from flame sheet problems on a 31 x 31 grid, the last on a more refined 63 x 63
grid, with discrete dimensions of 2,883 and 11,907, respectively. The first is drawn from the first
pseudo-transient Newton time step on the 31 x 31 grid, following interpolation from the Newton-
converged solution on a previous (coarser) grid. A At of 1.0 x 10- 5 was employed as a continuation
parameter for this particular Newton step, which had an linear residual of 0(104). The next derives
from the 84 'h and last pseudo-transient Newton step, after At had adaptively grown to 1.0 x 10- 1.
The third comes from a pure Newton step (At = co). Finally, after interpolation of the converged
solution to the 63 x 63 grid, a Jacobian was written based on an initial At of 1.0 x 10- 9 on a
problem with a linear residual of 0(108). Though this seems like an excessively conservative initial
time step, the strong nonlinearities and steep gradients prevent the pseudo-transient procedure
from converging if a much larger step is attempted. Three of the four linear algebraic methods
presented below are adequate for obtaining convergence of the linearized problem at larger time
steps (affording less diagonal dominance), but the updated nonlinear residual norms will diverge
dnring the psudo-transient Newton stepping.

Any linear system solution algorithm intended for use in fluid dynamical applications should
be robust with respect both to asymmetry, to allow for the presence of convective terms, and
indefiniteness, to allow for the presence of linearized source terms whose coefficients oppose the
algebraic sign of the diagonal term of the discrete convective-diffusive operator. The latter can
be particularly important in the modeling of chemically reacting flows in which at any point in
the flow field some species may be created while others are consumed. In the flame sheet context,,
however, indefiniteness does not occur, since (2.8) contains no source terms.

The first technique is block-line relaxation, the standard SOR method [141 (except for the
misnomer when w, the over-relaxation parameter, is less than one). The Jacobian (denoted by A
in this section), partitioned at the level shown in Fig. 4(b) is decomposed additively in the form
A = D - CL - Cu. In the limit of strong convection with upwind differencing, the lower triangular
part CL is more influential than the upper triangular part Cu, and the splitting matrix (QD - CL)
is chosen, with no symmetrizing step. With L = D- 1 CL and U = D-ICu, the overall iteration
matrix may be written as (I - wL)- I(wU + (1 - w)I), which form reveals how w may be adjusted
downward to gain control over a divergent problem. Of course, the application of D - 1 involves a
block tridiagonal solve at the level of Fig. 4(c), in which a dense LU factorization is performed at
the level of Fig. 4(d).

12

in =31, Ati n =31,Atf n =31, At.. n =63, Ati
Method Param. I IP I I P I I P I I P

Block-Line w = 0.50 84 84 43 43 58 58 -

w = 0.75 51 51 23 23 31 31 -

w = 1.00 31 31 69 69 - - -

w =1.20 17 17 - - - - - -

GMR/ILU K = 10 7 28 22 113 28 146 54 281
K = 50 '' '' 21 231 24 300 25 325

GMR/BILU K = 10 6 15 16 76 17 83 26 131
K = 50 '' '' 14 105 14 105 18 171

Cheby/BILU C = 10 9 9 18 32 20 34 46 74
C = 20 '' '' 22 36 22 36 42 56

Table 1: Iteration count I, and inner product count IP
for Jacobians from different stages of the flame sheet prob-
lem, using the four linear algebraic techniques described in
the text. Convergence for the block-line method was based
on an absolute tolerance of 1.0 x 10-5 on the normalized 2-
norm of the update vector. Convergence for the generalized
minimum residual and Chebyshev iterations was based on a
relative tolerance of 1.0 x 10-5 on the 2-norm of the residual
vector. Comparing the two convergence criteria, the block-
line criterion was slightly lenient, in that its terminal relative
residual reductions were less than five orders of magnitude in
some cases. (A hypen indicates divergence. A double quote
indicates a trivial repeated result.)

We note that the block-line method is very effective in the first system, which permits over-
relaxation, but becomes increasingly less so as the calculation evolves, and eventually fails to
converge even at w = 0.5 in the largest problem. Since each iteration requires an inner product to
evaluate the convergence criterion, I and IP are equal for this case.

The second technique is the Generalized Minimum Residual (GMR) method [25] with an
point incomplete LU factorization preconditioner, permitting no fi-in. The code PCGPAK [27]
was employed for these runs. Given a system of equations, Mx = f, M nonsingular, and an initial
iterate, z0, with initial residual, r0 f I - Mx0 , GMR computes the solution x from finding z E Kk
such that

(ro - Mz, v) = 0,

for all v E LA, and setting x = xO + z, where Kk and Lk are Krylov spaces based on r0:

K; = span{ro, Mro,..., Mk- 1 ro}, L= span{MrO, M 2re,..., Mkro}.

The solution x computed after k steps of GMR minimizes I'rJ12 in the affine space 0 -+ Kk. In a prac-
tical algorithm, an orthogonal basis for Kk is built up by means of a Gram-Schmidt or Householder
process, which obviates the necessity of working with the normal equations. Suitable computer
implementations of GMR have been given in [25] and [31], of which the former is employed in
these tests. Among the desirable properties of GMR are: (1) the only reference to M is in form of
matrix-vector products, (2) it cannot break down (in exact arithmetic) short of delivering the solu-
tion even for nonsymmetric systems with indefinite symmetric part, (3) it requires less storage and

13

fewer operations per step than the mathematically equivalent GCR and ORTHODIR algorithms,
and (4) the 2-norm of the residual is non-increasing and can be monitored without constructing
intermediate solution iterates. The main disadvantage of GMR is the lack of a bounded recurrence
relation, which causes the operation count and storage requirements to grow quadratically and
linearly, respectively, in the iteration index. We note in particular that k(k + 1)/2 inner products
are required in a k-step procedure. In many applications, restarting GMR after a predetermined
number of steps is amelioratory, but restarted GMR can also fail through stagnation.

GMR is often uneconomical when left to act by itself on a general reaction-convection-diffusion
operator. In an effort to control the work and storage required by GMR when A has a widely spread
spectrum, we precondition the iterations by taking M in the formulae above to be AB - 1, where
B is an approximation to A whose inverse is relatively inexpensive to apply. This is "right" pre-
conditioning, which first solves Mi = f for i, then Bx = i for z. We adopt right over left
preconditioning because in the latter the matrix B enters into the GMR residual convergence crite-
rion in a direct way, making convergence comparisons between different preconditioning techniques
difficult. Approximate factorizations of the original matrix into triangular matrices, such as in-
complete LU-decomposition (ILU) [21], are useful general purpose preconditioners for GMR and
other Krylov methods. "Incomplete" refers to the fact that certain elements which would fill in
and destroy the sparsity of A in a complete factorization are never computed or stored, saving
operations and memory. The present examples employ the crudest of techniques appropriate to
nonsymmetric systems, a Crout-Doolittle ILU(0), where the zero indicates that no fill-in outside
the original sparsity pattern of A is allowed (see (32]).

From the table, we note that GMR/ILU is more robust than the block-line method, but requires
substantial memory and inner products in "difficult" problems. Two versions of GMR/ILU are
presented. The K = 10 version is a restarted GMR which discards the Krylov subspace every 10
iterations, constructs the new residual vector, and iterates again. Using a restart cycle reduces
inner product count by keeping k small in the quadratic term. However, as in the fourth system
presented in the table, overall iteration count can increase and take back some of this gain in the IP
category. The K = 50 version is essentially K = oo in the cases considered, since I never exceeded
50. The preconditioner is essential. As a baseline reference for the first and best conditioned case in
the table, only two decades of residual reduction were obtained after 50 steps of unpreconditioned
GMR, or after 200 steps of restarted (K = 10) unpreconditioned GMR.

The third technique is again GMR, but with a block preconditioning at the level of Fig. 4(c).
This algorithm was hand-coded from scratch in anticipation of a parallel port (see next section).
Block preconditioning exploits the fact that the tightest coupling in our systems is between un-
knowns at the same gridpoint, which it handles exactly. The superiority of B[LU over ILU is
apparent in all table entries. Of course, the preconditioning matrix is itself more expensive to form
and apply.

The fourth technique is BILU-preconditioned adaptive Chebyshev iteration [19], suitable for
cases in which the indefiniteness can be controlled and advantageous in parallel contexts because
of its short recurrence relation. The code CHEBYCODE (1] was employed for these runs, supple-
mented by the same block-ILU code used in the previous technique.

From the initial iterate, zo, the Chebyshev algorithm generates a sequence of iterates such
that

rh = Pk(M)ro, t

where

and Tk is the klh Chebyshev polynomial of the first kind. The parameter d defines the center and

14*

c the foci (at d - c) of a family of confocal ellipses in the complex plane on which the Chebyshev
polynomials are rapidly decreasing in norm as k increases. There is a smallest such ellipse which
contains the spectrum of M. If it does not contain the origin, the sequence of residuals above is
rapidly convergent. Like GMR, Chebyshev iteration deals directly with a nonsymmetric matrix
M, without reference to the normal equations. Unlike GMR, Chebyshev iteration requires the
estimation of parameters describing the convex hull of eigenvalues of M. After an initial guess,
these estimates are obtained adaptively using the modified power method labeled "Method 3" in
[20] as a by-product of successive residuals. For a sub-sequence of four residuals, the cost of these
estimates is 14 inner products per adaptive step. The present examples employ d = 1, c = 0 as the
initial guess, which describes circles centered at the point z = 1. This is a reasonable estimate for
a good preconditioner like block-ILU, since the spectrum of AB - 1 lies in a small region near 1. (In
all the cases we have inspected, the real parts are bounded between 0.2 and 1.5 and the imaginary
parts between -0.4.)

The table shows that Chebyshev/BILU is always less powerful than GMR/ILU in terms of
iteration count (and hence matrix-vector products using M), but always superior in terms of inner
product count. Two versions of Chebyshev/BILU are presented. The C = 10 version forces an
adaptive estimation of d and c every ten steps unless the iterations are converging sufficiently
rapidly. The C = 20 version allows twice as many slowly converging steps between adaptations.

*(Divergence also invokes the the adaptive procedure in CHEBYCODE, but this did not occur in
our examples.) Iteration count is not monotonic in C (unlike K in GMR), so problem-specific
investigation is worthwhile.

In summarizing the discussion of Table 1, block-preconditioned GMR and Chebyshev meth-
ods have complementary strengths. The GMR. version always requires fewer references to M and
(roughly proportionally) less CPU time on a serial computer, even when restarted at intervals com-
mensurate with Chebyshev adaptive cycles. However, the decision on which one to prefer in parallel
depends ultimately on the communication-to-computation rates of the hardware in question, since
the Chebyshev version is always superior in inner products.

6. Parallel Experiments for Flame Sheet Jacobians

We have seen in section 4 that domain decomposition of the Newton solver is trivial except
for the solution of the linear systems, and in section 5 that GMR/BILU is the method of choice
for our flame sheet Jacobians in the serial context. We also have from the complexity analysis
that individual matrix-vector multiplies are no worse from a communication point of view than
the residual vector evaluations required by other stages of Newton's method. Therefore, provided
that iteration counts can be kept low, say O(lOrfN), it is only the preconditioner phase of the
GMR algorithm that poses a parallel challenge. A global ILU can be a bottleneck in parallel
implementations because of the sequential nature of triangular factorizations and solves. Though
wavefront-based or red-black reorderings of the standard sequential operations can alleviate this
problem [26] in the context of sparse banded matrices, domain-decomposition approaches side-step
it altogether by applying ILU within subdomains only. We now describe two domain-decomposed
implementations of GMR/BILU. Both consist of creating separate BILU preconditioners for each
subdomain and building them into a global preconditioner which is basically block-diagonal at the
subdomain level. The two methods differ in that one of the preconditioners is allowed nonzero
border blocks to provide for the flow of information between subdomains in the preconditioner
phase.

The GMR iterations are already "inner iterations" from the point of view of the overall non-
linear process. To avoid any deeper nesting of iterations in applications, we choose a priori to
iterate simultaneously on all of the unknowns in the linear system, in the sense that the subdomain

15

..

.............. I.

........ .

a..

(a) (C)* *

(b) (d)

Figure 5: Sparsity patterns for two different decompositions
of a rectangular region into two strips using a 9-point finite-
difference template: (a) without edge; (b) sparsity pattern
of A for (a); (c) with edge; (d) sparsity pattern of A for
(c). The B operators have the asterisked blocks removed
for parallelism. Within each subdomain the gridpoints are
ordered lexicographically.

problems are not individually iterated to convergence before their values are used to update the
right-hand sides of the equations for the interfacial unknowns. This form of full matrix domain
decomposition was advocated in (5] for problems in which no fast solver is known for the subdomain
interior problems, and has been demonstrated therein to lead to an optimally convergent scheme
for a class of self-adjoint strongly elliptic operators, provided (among other things) that spectrally
equivalent subdomain preconditioners are employed.

The best paradigm for domain decomposition is the decomposition into two strips of a rectan-
gular region overlaid by a tensor-product grid. In one case the cut passes "between" grid points; in
the other, it follows a line of gridpoints, which are ordered separately. For a 9-point operator on a
grid with 16 interior subintervals in each direction (with Dirichlet boundary conditions eliminated)
the resulting sparsity pattern for the operators A and B indicated graphically in Fig. 5.

16

..- -

The matrix of Fig. 5(b) can be written

A Al A 1 2) with a preconditionerB A, A) (6.1)

where the Ai, are ILU approximations. In this method, the creation of independent threads of
computation in the preconditioner comes at the expense of severing the interdomain coupling
altogether. It therefore parallelizes with virtually no overhead, but potentially suffers in iteration
count as the granularity of the decomposition is refined and more and more of the coupling is
discarded. Its limit is block-point diagonal preconditioning. Some experiments with this technique
have been reported in (2] and (31, and we have also tested it on all of the Jacobians of the previous
section. It is referred to as the "uncoupled" preconditioning in the tables to follow.

The matrix of Fig. 5(d) is
Al 0 A13
A 22 A23 (6.2)

A31 A3 2 A33

Here, A3 3 renders the coupling between the points on the interface itself. The conformally parti-
tioned preconditioning matrix we propose for A is

(A - 122 A23 ,
(6.3)

0
where C approximates the Schur complement of A11 and A22 in A. The exact Schur complement,

C, may be obtained from block-Gaussian elimination on A as:

C = A3 - A31Aj'A I3 - A3 2 A-1A23. (6.4)

The tilde-notation in the definition of B accommodates the replacement, if convenient, of the ex-
act Aij with approximations thereto. We assume throughout that the Aii are invertible. (This
is certainly a reasonable requirement for a discrete convective-diffusive operator.) Under this as-
sumption, C is also invertible [8]. This technique is referred to as the "Modified Schur Complement
(MSC)-coupled" preconditioning. For further details on the motivation and construction of MSC-
interface preconditioning, see [7, 15, 181. For present purposes it is important only to note that the
MSC-coupled version is hierarchical; that is, it is built on top of the subdomain preconditioning
and requires a small number of ILU solves on each subdomain to construct. If the subdomain
preconditioning is poor, there is no reason to expect that the MSC preconditioning of the interfaces
is good. Note that the inverse of either B can be applied with one solve in each subdomain.

Tables 2 through 5 in this section report parallel results on the four Jacobian systems considered ,_
above.

The first case, the initial pseudo-transient step on the 31 x 31 grid, is solved with each pos-
sible number of processors between 1 and 16. One notes that the iteration count grows mono-
tonically with the granularity of the decomposition for the uncoupled version, a degradation of
convergence penalty for throwing away information. Somewhat surprisingly, the iteration count
has non-monotonic behavior in the coupled case. The fact that the 8-subdomain case requires r
fewer iterations than the global algorithm causes super-linear speed-up; that is the 8-processor
code executes more than 8 times as fast as the 1-processor code. This effect is due to an interaction
between the MSC and ILU preconditioners, and eventually is swamped by the loss of the "chunky"
subdomain condition at high processor numbers. The actual parallel efficiencies e are plotted in

17

ALI,,

Fig. 6. In order to separate iteration count effects from synchronization and communication effects,
a third curve appears in this figure. For the third curve, which is for the MSC-coupled case, the
iteration count has been fixed at the p = 1 total of 6, independent of residual convergence. The
peaks of this curve occur at p - 2d

, at which all of the subdomain interiors have the same discrete
thickness. (For p - 2d, there are d + 1 subdomains of exactly 2 5- d - 1 rows each.) At all other p,
there are load imbalances between the subdomains which allow idling.

Uncoupled MSC-Coupled
p I T e I T e

1 6 24.9 1.00 6 25.1 1.00
2 6 13.4 .93 6 13.4 .94
3 6 9.1 .91 6 9.3 .90
4 6 6.8 .91 6 6.8 .92
5 6 5.6 .89 5 5.1 .98
6 6 4.9 .85 6 5.1 .82
7 9 6.1 .58 5 3.7 .97
8 9 4.9 .64 5 3.0 1.05
9 8 4.4 .63 6 3.5 .80

10 9 4.8 .52 6 3.4 .74
11 10 4.1 .55 7 3.1 .74
12 10 4.2 .49 7 3.1 .67
13 12 4.9 .39 7 3.1 .62
14 13 5.4 .33 8 3.5 .51
15 13 5.4 .31 8 3.5 .48
16 13 3.9 .40 8 2.6 .60

Table 2: Iteration count I, CPU time T, and efficiency e
for Jacobians from the initial pseudo-transient Newton step
of the flame sheet problem with horizontal strips on a 31 x 31
grid as a function of number of processors p.

For the next case, the final pseudo-transient step on the 31 x 31 grid, and subsequently,
attention is focused on iteration behavior, by considering p = 2d only. One notes that the iteration
count grows monotonically and rather badly for both preconditioners; however, wall-clock speed-
ups are obtained all the way to the limit of 16 processors. Neither method is preferable at all
values of p; however, the uncoupled one is surprisingly good. This competitive behavior of the
uncoupled algorithm is not generally found with scalar convective-diffusive systems (see [18]), since
spatial coupling is dominant in such problems. In reacting flows, the grid-point blocking is enough
for a decent preconditioning. In fact, the attempt of the MSC preconditioning to account for
spatially-connected neighbors interacts negatively with the BILU in several cases.

For the third case, the full Newton step on the 31 x 31 grid, all of the conclusions of the previous
case are repeated. The efficiencies are the lowest of any of the four cases due to degradation of
convergence, but speed-ups do occur all the way up to p = 16.

The final case is a reprise of the initial one. The MSC-coupled version displays a retrograde
iteration count, and very high terminal efficiencies are obtained, in spite of the loss of "chunkiness".

All of the decompositions presented in this section were for strips normal to the axial direc-
tion. Cases for strips normal to the radial direction were also run, but were always inferior for a
corresponding number of subdomains. This is a natural reflection of the tight radial coupling in
the physics of the problem, which is preserved in strips which span from the axis to the confining

18
JI..

Parallel Efficiency vs. No. of Processors

.0 %

0.5 \

0.0 I , I , , , I0 5 10 15

p

Figure 6: Graphs of efficiency versus number of processors
for the solving the first linear system at the first pseudo-
transient Newton step on the 31 x 31 flame sheet problem.
The uniform dashed curve is for the uncoupled algorithm
and the patterned dashed curve for the MSC-coupled version.
The solid curve is for a reference case in which the number
of iterations has been fixed at a constant value of 6.

Uncoupled MSC-Coupled
p I T e I T e
1 14 56.0 1.00 14 56.2 1.00
2 15 31.7 .88 17 36.5 .77
4 16 17.0 .82 19 21.0 .67
8 20 11.2 .63 21 11.9 .59

16 25 8.1 .43 21 6.7 .52

Table 3: Iteration count I, CPU time T, and efficiency e for
Jacobians from the final pseudo-transient Newton step of the
flame sheet problem with horizontal strips on a 31 x 31 grid
as a function of number of processors p.

19

£4~-- -~ ----- I

Uncoupled MSC-Coupled
p I T e I T e

1 14 56.0 1.00 14 56.2 1.00
2 16 34.2 .82 18 38.9 .72
4 18 19.3 .73 24 27.5 .51
8 22 12.6 .55 30 18.2 .39

16 28 9.5 .38 34 12.1 .29

Table 4: Iteration count I, CPU time T, and efficiency e for
Jacobians from a full Newton step of the flame sheet problem
with horizontal strips on a 31 x 31 grid as a function of number
of processors p.

Uncoupled MSC-Coupled
p I T eT e

1 18 307. 1.00 18 309. 1.00
2 18 163. .94 18 155. 1.00
4 19 85.2 .90 18 81.2 .95
8 19 45.9 .83 17 39.0 .99

16 21 27.6 .70 17 23.3 .83

Table 5: Iteration count I, CPU time T, and efficiency e
for Jacobians from the initial pseudo-transient Newton step
of the flame sheet problem with horizontal strips on a 63 x 63
grid as a function of number of processors p.

wall. It is also an argument against box-wise decompositions, which are desirable in more isotropic
problems from a surface-to-volume ratio point of view.

Summarizing the results of this section, GMR/BILU has acceptable behavior in all representa-
tive stages of a flame sheet calculation, but guidelines on when the interface coupling has sufficient
incremental value to warrant its use axe still lacking.

7. Conclusions and Further Directions

We conclude that domain decomposition is a practical means of getting appreciable speed-
ups (%, 10) on a 16-processor array for representative two-dimensional finite-differenced systems
of PDEs. The generalized minimum residual method with point-blocked ILU preconditioning is
powerful in this context, but places more demands on the global communication properties of the
interprocessor network than a Chebyshev method with the same preconditioning.

Further research is suggested in areas of general algorithmic interest and those specific to
reacting flow systems.

A hybrid GMR-Chebyshev algorithm has been suggested in [10], which would seem very well
suited to parallel implementation, since it combines low inner product count of Chebyshev iteration
with an eigenvalue estimation scheme using a GMR-Arnoldi method, in which even the inner
products themselves are by-products of an iteration-advancing step.

It would be of interest to compare our subdomain-based parallel ILU preconditioners to those
in which the factorization (block-point or otherwise) is carried out over an entire domain. Since
no interfacial blocks requiring approximation are introduced, it is expected that this technique,
appropriately blocked, will have a better iteration count than subdomain-based techniques on most

20

-i" " ,.7 '

problems; however, its parallel efficiency can be so low in some problems (due to synchronization
delays) that it is inferior even to unpreconditioned GMR [4] as a parallel algorithm. A wide range
of comparisons are needed here.

There is no consideration of complex domain geometry in the present work although ease of
generalization to this case is an equally relevant motivation. The case of problems requiring too
much memory to be managed by just one processor is another one in which the proposed technique is
attractive, despite possible iteration count degradation relative to a global technique. Comparisons
to non-domain decomposition-based techniques for non-tensor product grids and out-of-core solvers
would be relevant on large scientific and engineering problems.

Finally, from the applications point of view, Jacobians from detailed kinetics reacting flow mod-
els should be studied. The regime of many components per gridpoint (r i 20 rather than r = 3) is
expected to further bring out of the advantages of block-point preconditioning, reduce the impor-
tance of accurate interfacial coupling in the overall iteration count, and reduce the communication-
to-computation ratio by adding zero-space-dimensional work. Verification of these statements will
mean that future turn-around times for multidimensional reacting flow calculations on currently
available supercomputers will be measured in hours rather than days.

8. Acknowledgements

The support of Dr. R. G. Voigt of the Institute for Computer Applications in Science and
Engineering, and Prof. M. H. Schultz of the Yale Research Center for Scientific Computation is
gratefully acknowledged. This synthetic work, bridging architectures and applications with novel
algorithms, would not have been possible without collaborations during the past few years with
Profs. W. D. Gropp (Dept. of Computer Science) and M. D. Smooke (Dept. of Mechanical
Engineering) of Yale.

21

...

9. References

[1] S. F. Ashby, CHEBYCODE: A FORTRAN Implementation of Manteuffel's Adaptive Chebyshev
Algorithm, Technical Report UIUCDCS-R-85-1203, Dept. of Computer Science,
University of Illinois, May 1985.

[2] C. Ashcraft and R. Grimes, On Vectorizing Incomplete Factorizations and SSOR Precon-
ditioners, Technical Report ETA-TR-41, Boeing Computer Services, December
1986.

[3] C. Ashcraft, Domain Decoupled Incomplete Factorizations, Technical Report ETA-TR-49,
Boeing Computer Services, April 1987.

[4] D. J. Baxter, personal communication, 1987.
[5] J. H. Bramble, J. E. Pasciak and A. H. Schatz, The Construction of Preconditioners for

Elliptic Problems by Substructuring, I, Math. Comp., 47 (1986), pp. 103-134.
[6] T. F. Chan, R. Glowinski, J. Periaux and 0. Widlund,, Second International Symposium on

Domain Decomposition Methods, SIAM, Philadelphia, 1989 (to appear).
[7] T. F. Chan and D. Resasco, A Survey of Preconditioners for Domain Decomposition, Technical

Report 414, Computer Science Dept., Yale University, September 1985. In
Proceedings of the IV Coloquio de Matemiticas del CINVESTAV, Workshop in
Numerical Analysis and its applications, Taxco, Mexico, Aug. 18-24, 1985.

[8] R. W. Cottle, Manifestations of the Schur Complement, Lin. Alg. Appl., 8 (1974), pp. 189-211.
[9] A. R. Curtis, M. J. Powell and J. K. Reid, On the Estimation of Sparse Jacobian Matrices, J.

Inst. Math. Appl., 13 (1974), pp. 117-119.
[10] H. C. Elman, Y. Saad & P. E. Saylor, A Hybrid Chebyshev Krylov Subspace Algorithm for

Solving Nonsymmetric Systems of Linear Equations, Technical Report 301, Dept. of
Computer Science, Yale University, February 1984.

[11] V. Giovangigli & N. Darabiha, Vector Computers and Complex Chemistry Combustion, C.
M. Brauner & Cl. Schmidt-Lain4 ed., Mathematical Modeling in Combustion and
Related Topics - Proceedings of a NATO Advanced Research Workshop, April 27-30,
1987, Lyon, France, Martinus Nijhoff, Dordrecht, the Netherlands, 1988, pp. 491-503.

[12] R. Glowinski, G. H. Golub, G. A. Meurant and J. Periaux,, First International Sympo-
sium on Domain Decomposition Methods for Partial Differential Equations, SIAM,
Philadelphia, 1988.

[13] A. D. Gosman, W. M. Pun, A. K. Runchal, D. B. Spalding & M. Wolfshtein, Heat and Mass
Transfer in Recirculating Flows, Academic Press, New York, 1969.

[14] L. A. Hageman & D. M. Young, Applied Iterative Methods, Academic Press, New York, 1981.
[15] D. E. Keyes and W. D. Gropp, A Comparison of Domain Decomposition Techniques for Elliptic

Partial Differential Equations and their Parallel Implementation, SIAM J. Sci. Stat.
Comp., 8 (1987), pp. s166-202. _

[16] D. E. Keyes and M. D. Smooke, Flame Sheet Starting Estimates for Counterflow Diffusion
Flame Problems, J. Comp. Phys., 73 (1987), pp. 267-288.

[17] , A Parallelized Elliptic Solver for Reacting Flows, A. K. Noor ed., Parallel
Computations and Their Impact on Mechanics, ASME, 1987, pp. 375-402.

[18] D. E. Keyes & W. D. Gropp, Domain Decomposition Techniques for Nonsymmetric Systems
of Elliptic Boundary Value Problems: Examples from CFD, T. F. Chan, R.
Glowinski, J. Periaux & 0. Widlund ed., Second International Symposium on Domain
Decomposition Methods, SIAM, Philadelphia, 1989 (to appear).

22

a . . - .

[19] T. A. Manteuffel, The Tchebychev Iteration for Nonsymmetric Linear Systems, Numer. Math.,
28 (1977), pp. 307-327.

[20] , Adaptive Procedure for Estimating Parameters for the Nonsymmetric Tchebychev
Iteration, Numer. Math., 31(1978), pp. 183-208.

[21] J. A. Meierink and H. A. Van der Vorst, Guidelines for the Usage of Incomplete Decompositions
in Solving Sets of Linear Equations as they Occur in Practical Problems, J. Comp.
Phys., 44 (1981), pp. 134-155.

[22] J. A. Miller, R. J. Kee, M. D. Smooke & J. F. Grcar, The Computation of the Structure
and Extinction of a Methane-Air Stagnation Point Diffusion Flame, Technical Report
WSS/CI 84-20, The Combustion Institute, 1984. (presented at the 1984 Spring
Meeting of the Western States Section of the Combustion Institute, University of
Colorado, Boulder).

[23] A. K. Noor, ed., Parallel Computations and Their Impact on Mechanics, ASME, New York,
1987.

[24] W. Proskurowski, ed., Applied Numerical Mathematics (special issue on domain decomposition),
1989.

[25] Y. Saad and M. Schultz, GMRES: A Generalized Minimum Residual Algorithm for Solving
Nonsymmetric Linear Systems, SIAM J. Sci. Stat. Comp., 7(1986), pp. 856-869.

[26] Y. Saad & M. Schultz, Parallel Implementations of Preconditioned Conjugate Gradient Methods,
Technical Report YALEU/DCS/RR-425, Computer Science Dept., Yale University,
October 1985.

[27] Scientific Computing Associates, PCGPAK User's Guide, 1984.
[28] M. D. Smooke, Solution of Burner-Stabilized Pre-Mized Laminar Flames by Boundary Value

Methods, J. Comp. Phys., 48(1982), pp. 72-105.
[29] M. D. Smooke, R. E. Mitchell & J. F. Grcar, Numerical Solution of a Confined Laminar

Diffusion Flame, G. Birkhoff & A. Schoenstadt ed., Elliptic Problem Solvers II,
Academic Press, New York, 1984, pp. 557-568.

[30] M. D. Smooke, A. A. Turnbull, R. E. Mitchell & D. E. Keyes, Solution of Two-Dimensional
Axisymmetric Laminar Diffusion Flames by Adaptive Boundary Value Methods, C.
M. Brauner & Cl. Schmidt-Laini ed., Mathematical Modeling in Combustion and
Related Topics - Proceedings of a NATO Advanced Research Workshop, April 27-30,
1987, Lyon, France, Martinus Nijhoff, Dordrecht, the Netherlands, 1987, pp. 261-300.

[31] H. F. Walker, Implementation of the GMRES Method Using Householder Transformations,
SIAM J. Sci. Stat. Comp., 9 (1988), pp. 152-163.

[32] J. W. Watts, III, A Conjugate Gradient-Truncated Direct Method for the Iterative Solution of
the Reservoir Simulation Pressure Equation, Soc. Petrol. Engin. J., 21(1981), pp.
345-353.

23

23r

NASA Report Documentation PageN o-o Ae tauhCs WVel

So-Ice Ao-,',Vato'

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.
I* ASA CR- 181719
ICASE Report No. 88-52--

4. Title and Subtitle 5. Report Date

DOMAIN DECOMPOSITION METHODS FOR THE PARALLEL September 1988
COMPUTATION OF REACTING FLOWS

6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.

David E. Keyes 88-52

10. Work Unit No.

505-90-21-01

9. Performing Organization Name and Address

Institute for Computer Applications in Science 11. Contractor Grant No.

and Engineering NASI-18107, AFOSR 88-0117

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23665-5225 13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address Contractor Report
National Aeronautics and Space Administration

Langley Research Center 14. Sponsoring Agency Code

Hampton, VA 23665-5225

15. Supplementary Notes
Langley Technical Monitor: Submitted to Minnesota Super-

Richard W. Barnwell computer Institute's Workshop on
Practical Iterative Methods for

Final Report Large-Scale Problems

16. Abstract 'Domair decomposition is a natural route to parallel computing for partial differential equation

solvers. In this procedure, subdomains of which the original domain of definition is comprised are
assigned to independent processors at the price of periodic coordination between processors to
compute global parameters and maintain the requisite degree of continuity of the solution at the
subdomain interfaces. In the domain-decomposed solution of steady multidimensional systems
of PDEs by finite difference methods using a pseudo-transient version of Newton iteration, the
only portion of the computation which generally stands in the way of efficient parallelization is
the solution of the large, sparse linear systems arising at each Newton step. For some Jacobian
matrices drawn from an actual two-dimensional reacting flow problem, we make comparisons
between relaxation-based linear solvers and also preconditioned iterative methods of Ciljugate
Gradient and Chebyshev type, focusing attention on both iteration count and global irer product
count. The generalized minimum residual method with block-ILU preconditioning is judged the
best ser l method among these considered, and parallel numerical experiments on the Encore
Multima demonstrate for ita o _10, 6W :upo * t r three special
features of reacting flow models in relation to these linear systems are: the possibly large number

of degrees of freedom per gridpoint, the dominance of dense intra-point source-term coupling
over interpoint convective-diffusive coupling throughout significant portions of the flow-field, and
strong nonlinearities which restrict the time-step to small values (independent of linear algebraic
considerations) throughout significant portions of the iteration history. Though these features
are exploited to advantage herein, many aspects of the paper are applicale to the modeling of
general convective-diffusive systems. t '

17. Key Words (Suggested by Author(s)) 18. Distribution Statement -4ro 7 5Ie '

domain decomposition, iterative methods, 64 - Numerical Analysis'
Newton's method, parallel algorithms,
computational fluid dynamics, combustion,
nonlinear elliptic problems Unclassified - unlimited

19. Security CWesi. (of this report) 20. Security Cleesi. (of this page) 21. No. of pages 22. Pric

Unclassified Unclassified 25 A02 '.

NASA FORM 11= OCT 86 NASA-Lan , 1g9e 8 l

